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Abstract Gross primary production and ecosystem

respiration together define ecosystem metabolism and

help indicate the importance of internal and external

carbon sources. Spatial variability of these processes is

poorly characterized in rivers. We measured metabo-

lism in the Kansas River: (1) at 10 locations over 100 s

of km in tributaries within the watershed and (2) over

20 km with detailed sampling in the main stem.

Whole-river metabolism at the larger scale was

decoupled from light, algal growth, and nutrient

limitation, and was positively related to nutrients.

Smaller-scale main stem sampling revealed almost as

much variance over a few kilometers as the larger

scale sampling. Local processes seemed to dominate

dissolved oxygen dynamics, since diurnal dissolved

oxygen patterns were better correlated with absolute

time than data corrected for travel times. A single-

station method compared against two-station metabo-

lism methods indicated that local hotspots of metabo-

lism occur at scales less than 1 km and that single-

station estimates average out this variance. The main

stem data provide support to the idea that functional

processing zones control characteristics used to esti-

mate system metabolism, but the nutrient effect at the

whole watershed level indicates that transport from

upstream can also be important.
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Introduction

Ecosystem metabolism is a characteristic that controls

food webs, biogeochemistry, and transport of organic

materials and nutrients within and through rivers and

streams. This set of metabolic processes includes net

ecosystem production (NEP), the balance of gross

primary production (GPP), and ecosystem respiration

(ER). Aquatic food webs rely on a continuous input of

energy in the form of organic matter originating either

within (autochthonous) or outside of (allochthonous)

the ecosystem (Wetzel, 2001). Thus, measures of

metabolism within an aquatic ecosystem are instru-

mental in understanding interactions among organ-

isms and their environment (Thorp & Delong, 2002;

Marcarelli et al., 2011) and act as important indicators

of trophic state (Dodds, 2006). Lotic waters are a

unique system in which to study metabolism due to

their unidirectional flow, dynamic geomorphology,

spatial heterogeneity, and high variability in physical,

chemical, and biological characteristics (Wetzel,

2001). Some of these highly variable parameters

complicate the measurement and scaling of ecosystem

rates, while others can inform models of metabolic

control over dissolved oxygen.

Several factors interact to determine spatial patterns

of metabolic rates locally and across watersheds.

Light, temperature, and nutrient concentrations all can

directly influence GPP by stimulating photosynthetic

rates (Wetzel, 2001) while other factors, such as

grazing, sloughing, or scouring, can influence loss

rates (Dodds & Whiles, 2010). In large rivers, light

availability can be spatially heterogeneous due to

factors such as canopy cover or the interaction

between depth and turbidity (Ochs et al., 2013). ER

can be influenced by carbon availability (GPP along-

side external inputs), as well as temperature and losses

from grazing and scouring. Metabolic rates of aquatic

organisms generally increase with temperature (Allen

et al., 2005). Demars et al. (2011) found that NEP

decreased exponentially with increasing temperatures

across a 20�C gradient due to ER increasing at a faster

rate than GPP. A better constrained study shows

similar increases in ER and GPP (Demars et al., 2016).

Nutrient availability also acts as a driver of metabo-

lism in rivers and such effects are well documented

(e.g., Karr & Dudley, 1981; Wetzel, 2001; Richards

et al., 2008). While the impact of abiotic factors on

river metabolism has received substantial attention,

few studies, of which we are aware, have empirically

measured metabolism in large rivers at multiple points

within the network while paying explicit attention to

scale of variance.

Most investigators measure whole-system metabo-

lism at one or a few locations, with little understanding

of how representative these measures are of the entire

river (except see Williams et al., 2000; Reichert et al.,

2009; Demars et al., 2011; Hunt et al., 2012; Hondzo

et al., 2013; Houser et al., 2015; Siders et al., 2017).

When investigating drivers of metabolism, we expect

specific parameters to differentially affect GPP and

ER and anticipate variation across scales. This vari-

ation in rivers has been represented mathematically

(Reichert et al., 2009) but its assumptions have been

questioned because results defying the laws of

biophysics of the system can emerge (Demars et al.,

2015), as previously found for other two-station

models (Demars et al., 2011).

Lotic metabolism is sometimes measured at fine

spatial scales or in controlled laboratory settings

(Oviatt et al., 1986; Findlay et al., 2003; Wiegner

et al., 2005), but these studies may not reflect whole

ecosystem conditions and are therefore difficult to

accurately scale up to larger aquatic systems (Carpen-

ter, 1996). Studies that measure lotic metabolism

across large spatial scales and incorporate heterogene-

ity are lacking (Reichert et al., 2009), especially those

with the goal of understanding processes that con-

tribute to variation both within a river and across a

landscape (Hall et al., 2016). This heterogeneity could

be important depending upon the extent to which

rivers and streams link to their upstream components

(Siders et al., 2017). In fact, influential concepts in

river ecosystem ecology variously recognize the

importance of upstream (i.e., River Continuum Con-

cept; Vannote et al., 1980) and lateral (i.e., Flood Pulse

Concept; Junk et al., 1989) linkages and modifications

thereof (i.e., Serial Discontinuity Concept; Ward &

Stanford, 1995) for local metabolism. Alternatively,

local conditions can dominate ecosystem processes

(i.e., Riverine Productivity Model; Thorp & Delong,

1994), and this idea was more explicitly formalized as

functional processing zones in rivers (i.e., Riverine
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Ecosystem Synthesis; Thorp et al., 2006). These

competing perspectives of river metabolism call into

question the specific applicability of river metabolism

estimates. For example, if highly local processes

dominate (e.g., Kupilas et al., 2017), but experimental

methods measure metabolism on much greater spatial

scales, incorrect inference is possible with respect to

the interpretation of metabolic rate estimates (and vice

versa). Methodology for metabolism measurements

varies from small chambers at decimeter scales (e.g.,

Bott et al., 1985), to eddy covariance methods at tens

of meters (Berg et al., 2016), and whole stream

methods at 100 m or greater scales. Few studies link

the scales (except see discussion in Tromboni et al.,

2017).

To date, metabolism is more commonly measured

or estimated in smaller streams relative to large rivers

due in part to the logistic constraints associated with

field measurements in larger channels (Dodds et al.,

2008, 2013; Hall et al., 2016). Thus, we have few data

to understand how spatial scale affects metabolism in

rivers and we have a need for research that integrates

large spatial scales and takes into account metabolism

estimates at smaller scales (however, see Houser et al.,

2015; Williams et al., 2000). Our primary objectives

were to determine if metabolism varies spatially

across a 20 km length of the Kansas River and to

compare metabolism among numerous tributaries in

the Kansas River basin at a larger scale. A recent

approach taken in small streams was to see if

sequential two-station estimates of metabolism

matched single-station estimates (Siders et al., 2017)

and we take this approach and apply it to a larger river

system. Our initial predictions on how various factors

interact with scale to control metabolism in each

system led us to hypothesize that (1) metabolism

(NEP, ER, and GPP) will be spatially heterogeneous in

the Kansas River as driven by variation in light and

external carbon input; (2) differences in nutrients and

nutrient limitations among broadly distributed sites

will influence GPP and ER and interact with the first

prediction (Schade et al., 2011); and (3) local

processes will dominate GPP and upstream processes

will have more influence on ER (Fuß et al., 2017).

First, we made metabolism and habitat measurements

at 10 streams distributed across the Kansas River

watershed coupled with physical and chemical mea-

surements and associated nutrient diffusing substrata

experiments. Second, we completed a detailed set of

deployments of dissolved oxygen (O2), temperature,

and light sensors along a 20-km stretch of the main

stem of the Kansas River coupled with multiple

measurements of physical habitat.

Materials and methods

Study system

The Kansas River system originates in eastern Color-

ado and flows east to the Missouri River. The main

stem of the Kansas River forms at the confluence of the

Smoky Hill and Republican Rivers in northeastern

Kansas (Quist et al., 1999). The total drainage covers

approximately 159,000 km2 of land in portions of

Colorado, Nebraska, and Kansas (Metcalf, 1966).

Shallow side channels, vegetated islands, and sandbars

(Quist et al., 1999) characterize the Kansas River. In

2007, we used ten sites throughout northern Kansas for

a comparison of metabolism across tributaries of the

Kansas River (Fig. 1). We then selected a 20-km

stretch of the Kansas River between Ogden and

Manhattan, Kansas, for a detailed study of within-

reach river metabolism heterogeneity in 2015 (Fig. 1).

2007 Large-scale comparison; sites, physical,

chemical, and habitat variables

The ten small streams for our large-scale comparison

of metabolism were selected because they all lie

within the Kansas River drainage basin and represent a

range of characteristics including size, substrata

composition, and canopy cover (Table 1). The aver-

age discharge of these streams at the time of the study

ranged from 0.03 to 0.97 m3 s-1. Discharge at these

sites for the month prior to the sampling period was

relatively low with no major floods or spates. All

channel data within the small streams were collected

during the summer of 2007.

Dissolved oxygen (O2), water temperature, and

turbidity were measured using YSI 6920 V2 sondes

with Clark-type sensors (Yellow Springs Instruments,

Yellow Springs, Ohio). Data were logged at 10-min

intervals at one location in each stream and probes

were carefully calibrated for drift in the O2 reading.

Three Winkler titrations (Eaton & Franson, 2005)

were performed at each site during initial calibration
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of the sonde and at the end of the deployment period to

test for drift and absolute calibration. The beginning

sonde value was taken from a Winkler titration after

the sonde readings had stabilized (temperature equi-

libration and stabilization required about 30 min).

This calibration procedure was repeated after

deployment and deviation of O2 from the Winkler

was used to correct assuming linear drift over time.

Individual probes drifted at different rates, and drift

was generally less than 0.5 mg l-1. We retrieved

barometric pressure data for each site from historical

weather data using Weather Underground (www.

Fig. 1 [ArcMap] Map of Kansas including all study sites. Square in the northeastern quarter of Kansas represents the river reach

studied in 2015 and is magnified above. Triangles represent DO probe locations. Diamonds represent 2007 sites
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wunderground.com) at the closest airport to each

respective site for the days of data collection. Water

chemistry samples were taken on the day that the

sondes were deployed for analyses of total nitrogen

(TN) and total phosphorus (TP). Samples were taken

from an area of active flow and kept on ice until they

were returned to the laboratory (within 5 h), where

they were immediately frozen until analyses. Samples

were analyzed by a persulfate digestion (Ameel et al.,

1993) followed by analysis for phosphate and nitrate

on a continuous flow auto analyzer. Photosynthetically

active radiation (PAR) was measured at each site using

a single Odyssey logger (PAR Recorder, Data flow

systems, Christchurch, New Zealand) mounted adja-

cent to the sonde to estimate PAR at the water surface.

Data were logged at 10-min intervals for approxi-

mately 48 h.

Five of the ten sites (Stranger, Salt, Saline, Repub-

lican, and Mill Creek at Paxico) had United States

Geological Survey (USGS) gaging stations immedi-

ately above the site of O2 measurement. Stream

discharge, width, and velocity data were accessed

online from the USGS (USGS, www.usgs.gov). Only

discharge data were available at each site during the

dates of our study so we modeled width and velocity

using simple regressions made from a year of USGS

data. All width and velocity values from 2006 through

2007 were plotted against corresponding discharge

values and the equations from the resulting lines of

best fit were used to model the average widths and

velocities for each stream on each day of sonde

deployment (equations in Supplementary Table S1).

Average depth was then calculated by dividing the

discharge by the product of width and velocity.

For those sites without a nearby gaging station

(Delaware, Grasshopper, Clarks, Rock, and Muddy),

stream discharge calculations were made with the

handheld current meter method as described by Gore

(2006). Depth and velocity measurements were taken

for at least twenty points along a transect on the day of

sonde deployment and on the day of sonde retrieval.

The two resulting discharge calculations were used to

monitor discharge changes, and periods of time during

which discharge changed drastically were not used in

metabolism modeling.

We assessed physical habitat characteristics along

five transects in each stream spaced approximately

50 m apart (i.e., 200-m reach). We measured canopy

cover using a convex densiometer at four points onT
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each transect (each bank facing riparian zone and

middle of the transect facing each side). Dominant

substrata were determined by particle size (bedrock

and large boulders[ 45 cm, boulders – 25 to 45 cm,

cobble - 6 to 25 cm, gravel - 2 to 60 mm, sand

- 0.06 to 2 mm, mud and silt\ 0.06 mm) assessed by

grab samples and/or sight at each of 10 equally spaced

points on each transect. Relative frequency of sub-

stratum types at the reach scale was simply the number

of occurrences of each substratum class divided by 50

(i.e., 10 points on each of 5 transects).

2007 Nutrient diffusing substrata deployments

Nutrient diffusing substrata (NDS) were ammended

with inorganic nitrogen (0.5 M as KNO3) only, with

inorganic phosphorus (0.5 M as NaH2PO4) only, or

with both N and P (0.5 M each) according to

previously published methods (Tank et al., 2006;

Tank & Dodds, 2003). This two-factor design allows

for examination of independent and interactive effects

of N and P amendment. We drilled holes in the caps

and placed either glass-fritted filters or cellulose

sponge circles in the cap hole on the surface of the

agar and exposed them to stream water. Replicate

NDS with either glass frits or cellulose (5 of each for

each nutrient treatment or control) were placed on the

stream bottom in areas of modest flow in plastic racks

at each site for 21 and 10 days, respectively, in July

and August of 2007. The incubation time was shorter

for cellulose sponges because we found that sponges

were decomposing completely within 21 days in a

preliminary deployment. We collected glass frits and

spectrophotometrically measured chlorophyll a after

ethanol extraction to assess benthic algal nutrient

limitation (Sartory & Grobbelaar, 1984). We esti-

mated heterotrophic microbial nutrient limitation by

measuring respiration rates on collected cellulose

sponges. Sponges were placed in a full vial of room

temperature stream water from the appropriate site

with no atmospheric air. Dissolved oxygen concen-

trations were measured in the stream water at time

zero and after a known incubation time (1.5–3 h), and

these values were used to estimate respiration rates. A

two-way analysis of variance was used to assess

nutrient limitation according to Tank & Dodds (2003).

2015 Reach-scale heterogeneity: physical

and chemical methods

Physical and chemical measurements were conducted

at nine sites along a 20-km reach of the Kansas River

(Fig. 1). In the upstream portion of the reach (sites

1–3), channel measurements and physical and chem-

ical data were collected starting 11 October 2015,

during which the average discharge was 16.7 m3 s-1

(Table 2). Data were collected in the downstream

portion (sites 4–9) over 3 days beginning 25 October

2015, during which the average discharge was com-

paratively lower (8.2 m3 s-1). A third deployment

along the entire reach was attempted, but dam

operation during this time period caused discharge to

nearly double, so these data were only used for

analyses of spatial autocorrelation. Fifty-one years of

data from a nearby gaging station on the river (USGS

06879100) reported discharge values for October with

a median of 37 m3 s-1 with 10.3 and 19.4 m3 s-1 as

the lower 10th and 25th percentiles, suggesting that all

of our measurements in 2015 on the Kansas River

were made during extremely low discharge.

Dissolved O2, water temperature, and barometric

pressure were measured using YSI Professional Opti-

cal Dissolved Oxygen (ProODO) instruments (Yellow

Springs Instruments, Yellow Springs, OH). O2 was

logged with each sensor calibrated on the day of

deployment with water-saturated air until readings

stabilized. We did not need to use the Winkler

approach taken in 2007 as the optical probes are much

more stable and thus exhibit less drift. Water temper-

ature and barometric pressure at the surface were

measured by sensors within the probe and handheld

instrument, respectively. Probes were placed by

canoeing down the channel and identifying areas

where the stream channel was coherent and natural

features allowed them to be placed in the thalweg (i.e.,

the channel is sandy so the occasional log jams

provided good locations to place probes). There were

two modestly sized confluence channels and probes

were placed above and below them to account for

potential differences related to their input. Distance

between ProODO instruments was variable

(mean = 2.0 km, range = 0.27–10.1 km). Data were

logged at 10-min intervals for approximately 48 h.

PAR was logged at 10-min intervals at four points

along the river with Odyssey Photosynthetic Irradi-

ance Loggers (Model Z412). The channel was broad

90 Hydrobiologia (2018) 813:85–102
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and sandy, and had little influence of riparian vege-

tation, so four points were adequate.

Habitat parameters were measured along 42 tran-

sects from 1 km above the uppermost O2 probe down

to the lowermost probe. Parameters measured include

stream width (m), stream depth (m), velocity (m s-1),

and discharge (m3 s-1). Depth and velocity were

measured along 22 shallow, wadeable transects using

a handheld flow meter (Hach FH950), and data were

used to calculate average discharge across the 22

transects according to Buchanan & Somers (1969).

Measurements were dispersed evenly across a given

transect using a range finder and each measurement of

velocity was taken at 0.6 stream depth. For 20 deeper

(non-wadeable) transects, stream width, average

depth, and average discharge were measured directly

across the width of transects using a RiverSurveyor

model M9 Acoustic Doppler Velocimeter (ADP,

Sontek, YSI instruments, Yellow Springs, OH).

2015 River characteristic modeling

We used our field measurements in regression models

to predict velocity and depth based on width for each

of the 16.7 and the 8.2 m3 s-1 discharge conditions

(data in supplementary Table S2, equations in Sup-

plementary Materials Table S3). Four historical

Google Earth images were selected to represent a

range of discharges as recorded by the nearby gaging

station (USGS 06879100) and we used the ruler tool to

measure wetted river widths (excluding sandbars)

along the Kansas River centerline every 200 meters

from the lowermost station to 14-km upstream above

the uppermost site. These data were used to predict

depth and velocity every 200 m in the study area.

Modeling metabolism

We used a single-stationmethod (Dodds et al., 2013) to

model daily metabolism at the nine different locations

along the Kansas River and at single locations in each

of the 10 small streams.We compared this to the output

of two-station models sequentially calculated

upstream to assess the role of heterogeneity on the

single-station results. We employed two similar but

differently coded methods for fitting the data. The

Bayesian method of Grace et al. (2015) corrected for

light approximation according to Song et al. (2016,T
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downloaded on 6 September 2016 from https://github.

com/dgiling/BASE) and a Microsoft Excel-based

model (Dodds et al., 2013). Both methods yielded

similar results (R2 = 0.98, slope not significantly dif-

ferent from 1, linear regression) so we only present the

results from the Dodds et al. (2013) model (Bayesian

data in supplementary materials).

We also used a two-station method to estimate

metabolism in defined reaches between the probes for

the 2015 data (Riley & Dodds, 2013). In this method, a

curve-fitting approach similar to the one described by

Holtgrieve et al. (2010) is used to model daily O2 patterns

from expected changes in O2 due to production, respira-

tion, and aeration as calculated by physical measurements

and equations described by Riley & Dodds (2013).

With the single-station estimates, we were interested

in determining the appropriate upstream distance along

which to measure physical characteristics (Demars

et al., 2015). We adopted the procedure used by Hall

et al. (2015) to determine the length of approximately

80%O2 turnover based on the equations inDemars et al.

(2015) to calculate the 80% distance O2,80:

O2;80 ¼
1:61� v

k
; ð1Þ

where v is average velocity (m d-1) and k is aeration

(d-1). We used a multi-step procedure to determine

physical characteristics above each probe. First, we

modeled k assuming physical characteristics for one

km above the probe. We then used the modeled k and

measured average velocities to estimate how far

upstream we should be estimating depth, width, and

average velocity (Eq. 1). The rates of GPP and ER

were then re-modeled using these physical character-

istics. We also compared aeration rates obtained from

our models to the method of Chapra & Di Toro (1991)

based on time lags of O2 after peak light. We felt that

the time-lag could be related to factors in addition to

aeration, and wanted to verify this independent

method and find out if it matched.

Additional calculations and statistics

Statistical analyses were performed in Statistica

(Statsoft Inc., Tulsa, OK). Non-parametric Spear-

man’s Rank Correlation was used as an initial step of

data exploration, to test if O2 concentrations in the

2015 measurements were more strongly correlated by

time or space, and to test for the relationships among

GPP, ER, and k. Spatial autocorrelation was checked

by correlating all sites among each other after

correcting for travel time and observing if correlation

was a function of distance of sites from each other.

Temporal autocorrelation was tested by correlation

among all sites with time not corrected for travel time.

Regression and multiple regression analyses were

used to assess the relative importance of potential

independent variables influencing metabolism.

Calculated values for the 2007 data included

chlorophyll a accrual, degree of nutrient limitation,

and available light. Chlorophyll a accrual was calcu-

lated from the mass of chlorophyll a on the control

glass frits from the 2007 NDS deployments divided by

the number of days of deployment. The relative total

nutrient limitation was calculated as the log response

ratio in the N ? P additions relative to the controls.

Relative available light was calculated as the turbidity

measured with the sondes multiplied by the average

depth from habitat characterizations.

The downstream-most single-station estimate was

compared to two-station estimates upstream that were

summed by distance-weighting two-station results

upstream sequentially for the 2015 data. This approach

was taken to investigate the zone of influence on single-

station estimates. Distance-weighted metabolism for

the more detailed 2015 measurements was calculated

from two-station estimates of metabolic rates as

Md ¼
Xn

i

Mi �
Di

Dt

; ð2Þ

where Md is the distance or aeration footprint-

weighted metabolic estimate (GPP or ER), with

n measures of two-station metabolism (Mi) over

individual lengths of each two-station method (Di)

scaled by the total distance of summed two-station

models (Dt). Equation 2 was also used with aeration

scaled by the proportion of the footprint accounted for

by each individual two-station measurement relative

to the entire footprint accounted for with all sequential

measures.
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Results

2007 Broad scale comparison

Values of GPP and ER varied several-fold among

sites. The values for GPP ranged from 0.36 to

4.50 g O2 m
-2 d-1, and the range in values for ER

Fig. 2 Relationship between Gross Primary Production (GPP)

and ecosystem respiration (ER) from ten locations in the Kansas

River basin as estimated by a single-station model in 2007

(A) and within a 20-km reach of the main stem of the Kansas

River estimated with the two-station method in 2015 (B). Line
represents 1:1 ratio
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was similar (from - 0.43 to - 4.88 O2 m
-2 d-1).

GPP and ER were closely linked at each site (Fig. 2A)

and most sites had NEP close to zero (GPP/ER close to

1), with slightly higher ER rates at some sites

(Table 3). One concern with model fitting with

aeration is that ER and aeration can trade off against

each other (i.e., a high GPP, ER, and aeration give a

very similar model fit to a low GPP, ER, and aeration).

We found no significant correlation between modeled

aeration and either GPP or ER (P = 0.90 and 0.49,

respectively). This suggests that modeled aeration did

not control ER, or vice versa, and that the estimates are

independent.

Mean rates of chlorophyll a accrual per day were

0.11 lg cm-2 d-1, and were not correlated with either

GPP or ER (P[ 0.05, Table 4). Similarly, nutrient

limitation was significant across sites (the 95%

confidence interval did not include zero), but the

degree of nutrient (N, P, or both) limitation was not

significantly correlated with GPP or ER, or even TN,

TP, or their molar ratio (TN:TP). However, our

correlations from the nutrient diffusing substrata are

incomplete because we lost several experiments (4 of

10, Table 3).

Metabolic rates were linked to our estimate of

relative light (Fig. 3), but not as expected. As

depth 9 turbidity increased, GPP increased, and ER

became more negative (increased). Rates of GPP and

ER increased with total N (Fig. 3) but were not

significantly related to TP, potentially suggesting

nitrogen limitation of ecosystem rates. Percent mud

substratum was also positively correlated with GPP;

other substrata types were not. In general, nutrients

had stronger correlations with ER than with GPP.

Lags of O2 after the times of maximum PAR were

not driven by aeration. Aeration rates obtained from

our models and from the method of Chapra & Di Toro

(1991) indicated no significant correlation between

aeration and time lag of peak O2 (P[ 0.05, data not

shown).

2015 Local metabolism heterogeneity measures

Two-station estimates of GPP in the 2015 localized

measures were correlated with ER, but the estimates

fell further from the 1:1 line than did those in our

among-stream comparisons (Fig. 2B). This suggests

that ER and GPP were less tightly coupled locally than

in more broadly dispersed sites (but could also be

related to two-station method bias, Demars et al.,

2011).

Table 4 Spearman’s rank correlation of variables associated with ecosystem respiration (ER), gross primary production (GPP), and

net ecosystem production (NEP) for the basin-wide 2007 measurements

Daily ER (g O2 m
-2 d-1) Daily GPP (g O2 m

-2 d-1) Daily NEP (g O2 m
-2 d-1)

Width (m) - 0.406 0.564 0.455

Mean depth (m) - 0.527 0.697 0.152

Velocity (m min-1) 0.055 - 0.049 0.274

Discharge (m3 min-1) - 0.401 0.578 0.274

Aeration (min-1) - 0.248 0.042 - 0.588

Mud cover (%) - 0.546 0.669 - 0.141

TN (lg/l) - 0.783 0.617 - 0.250

TP (lg/l) - 0.350 0.133 0.150

N:P (molar) - 0.050 0.133 - 0.433

Canopy cover (%) 0.006 0.333 0.167

Depth 9 turbid - 0.783 0.850 0.283

Temperature (�C) 0.483 - 0.433 - 0.233

Avg. Chl a accrual (lg cm-2 d-1) 0.257 - 0.143 0.429

NP Chl a response log (NP:C) 0.257 - 0.086 - 0.143

Values significant at P\ 0.05 are bold

Note higher respiration rates (ER) are more negative, so negative correlations signify greater respiration with increase of the other

value
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We used these data in two ways to investigate the

relationship between spatial scale and heterogeneity in

stream metabolism. First, we compared correlation of

O2 values taken at each time point among all stations

corrected by travel time between each pair (Fig. 4A).

Second, we performed the correlation without time

correction so all points were matched by the exact time

they were collected, regardless of where they were on

the river (Fig. 4B). Specific locations upstream that

are hotspots of metabolic activity would be expected

to correlate better with a downstream station when

time corrected. If the system is homogenous and all

stations respond to variation in light over time in the

same way, then metabolic activity should correlate

well with space and not with time. There was a clear

decrease in correlation with distance between stations

when distance is corrected for travel time. There was

not a decrease in correlation with distance up river

when there was no travel time correction.

Fig. 3 Relationships between gross primary production and water light transmittance (turbidity 9 depth, A) and total nitrogen (B),
and ecosystem respiration and light transmittance (C) and total nitrogen (D) for sites around the Kansas River basin in 2007
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The zone of upstream influence based on the 80%

O2 turnover was generally greater than the distance to

the next station upstream (Fig. 5). However, these

zones were not longer than the length of the entire

study area. These estimates indicate the value of

comparing one and two-station spatially weighted

estimates.

We compared one and two-station estimates to

dissect out the potential effect of spatial heterogeneity

on single-station estimates. Several interesting pat-

terns emerge with the approach of comparing single-

station results to sequentially distance-weighted

upstream two-station results (Fig. 6). There is notice-

able heterogeneity in the two-station estimates. For

example, there is one short segment (between 2500

and 3000 m upstream of the downstream probe

(Fig. 6A) where ER is quite high, but GPP is not

(Fig. 6B). This particular segment modestly influ-

ences the distance-weighted estimate and somewhat

more strongly the aeration footprint-weighted esti-

mate relative to the downstream segment length.

Furthermore, the distance-weighted metabolism mea-

surement over multiple upstream segments generally

causes the calculated value to come closer to the

single-station method from the bottom of the contigu-

ous segments. The distance and aeration footprint-

weighted methods do not exactly correspond, with the

aeration-footprint method being less sensitive to high

values further from the downstream station.

Discussion

We investigated stream metabolism at two scales:

comparing sites on streams distributed across the

Kansas River watershed (2007) as well as among sites

within a single reach of the main stem Kansas River

(2015). As expected, GPP, ER, and NEPwere spatially

heterogeneous at both scales of study. We hypothe-

sized that open-canopy systems with clearer water

would be dominated by GPP but this was not

supported. We only found modest support for hypoth-

esized nutrient effects, suggesting that heterogeneity is

not primarily driven by nutrient availability at the

larger scale.

Data collected from different streams across the

watershed can be used to broadly address factors that

might influence whole-system metabolism. In con-

trast, many of the potential factors affecting stream

metabolism cannot be directly assessed using our

within-reach data because nutrients, turbidity, and

flow regime did not vary greatly along the 20-km

reach. Some factors that potentially affect GPP and ER

can be mostly ruled-out as driving differences among

streams in this study. Nutrient enrichment bioassays

did yield variable levels of chlorophyll accrual related

to N and P additions, indicating some nutrient

limitation of algal growth (N, P, or N and P co-

Fig. 4 Spearman’s rank correlations between dissolved oxygen

concentrations with all pairs of probes as a function of distance

between probes for 2015 data on sites within a 22-km section of

the Kansas River with correlations of O2 offset by travel time

between the stations (A) and with no time offset (B)
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limitation); however, GPP was not linked to chloro-

phyll accrual, degree of nutrient limitation, TN, or TP

(Table 4). Depth correlated with GPP in the opposite

direction than expected, as did the product of depth

and turbidity. This result could be related to develop-

ment of phytoplankton blooms in slower moving deep

rivers, but we did not take water column chlorophyll

samples so we cannot confirm this speculation. Flow

was relatively low during this study, and most of these

sites were shallow enough that they did not have

obvious phytoplankton blooms.

What does modeled aeration really represent?

Aeration is a key factor controlling how far upstream

processes influence O2 concentration at any particular

point downstream. It is therefore important to under-

stand the influence of aeration on whole-system

metabolism estimates and how aeration estimation

may influence the ability of various methods to detect

spatial heterogeneity. In extreme cases, very high rates

of aeration make it impossible to measure whole

stream metabolism because any deviation from satu-

ration is immediately equilibrated. In the other

extreme, with no aeration, O2 deficit or super satura-

tion would propagate over long periods (or distance in

flowing waters).

Chapra & Di Toro (1991) use the time lag of the

peak O2 following the light peak to indicate aeration.

Our data suggest that this is an incorrect interpretation

of the peak lag because our modeled aeration rates do

not match aeration rates estimated with this method.

There are other indicators that the lag is predominantly

reflective of aeration. Much of the GPP and ER is

probably associated with benthic microorganisms

occurring within the flow diffusion boundary, and

the rate that O2 enters or leaves the water column from

these biofilms could be limited by diffusion, causing

the observed lag. Similarly, the exchange between

shallow side pools and the main channel could cause

delays in response to light when the probes are placed

in the thalweg. As such, the time lag in our study is

probably an indicator of spatial segregation within the

habitat rather than aeration.

We also recognize that one aeration value for a 24 h

or greater period may be incorrect. For example,

changes in wind speed and direction could alter the

rates. This change could be particularly significant in

Fig. 5 Schematic of site locations for the work on the Kansas

River in 2017. Solid numbers refer to O2 probe locations with 9

being the furthest downstream. Non-filled in numbers indicate

the respective location of 80% oxygen turnover for each probe.

Flow is from lower left to upper right. Note that, sites 1–3 were

measured on a different day and at a higher discharge than sites

4–9
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larger water bodies with slow flow. It is also possible

common corrections for changes in temperature are

not correct as temperature variation also influences

water viscosity and subsequently turbulent mixing.

Spatial scale and metabolism

Data at the largest scale (2007 data) can be used to

assess if metabolic rates are a function of position in

A

C

E

B

D

F
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the watershed. The River Continuum Concept (Van-

note et al., 1980) proposes that upstream sites have

closed canopy resulting in net heterotrophy due to low

light and high inputs of terrestrial organic material.

Mid-order streams are predicted to be net autotrophic

as light allows for photosynthesis. Downstream turbid

sites are net heterotrophic, driven by organic material

transported from above. We found no clear relation-

ships between any of the modeled daily metabolism

estimates for 2007 (GPP, ER, or NEP) and stream

discharge or stream width, which can serve as

surrogates for stream order. This is in contrast to

Demars et al. (2016) who found that metabolism was

significantly related to discharge, and Hotchkiss et al.

(2015) who saw decreases in net ecosystem production

as river size increased. Individual metabolism esti-

mates can be highly variable even amongst rivers of

similar discharge in the temperate steppe/mountainous

regions of the western U.S. (Hall et al., 2016) and

small native grassland streams in the Kansas River

watershed (Riley & Dodds, 2012). However, ER was

related to total N, which is most likely delivered from

upstream. This indicates that the River Continuum

Concept is a weak predictor of whole-system meta-

bolic characteristics based on position in the water-

shed along an upstream to downstream continuum, at

least over the almost three orders of magnitude

discharge between our smallest and our largest

systems. This leaves us seeking alternative explana-

tions for factors influencing spatial heterogeneity in

metabolism.

High correlation between GPP and ER may suggest

that autotrophs, as opposed to heterotrophs, are the

primary contributors to these aspects of river metabo-

lism (Huryn et al., 2014). We therefore expect that

light would be the primary driver of metabolic

heterogeneity given prior research on the role of light

in controlling GPP in streams (Mulholland et al., 2001;

Bernot et al., 2010). However, variance in metabolic

rate estimates was similar when comparing the

spatially explicit two-station means and standard

deviations for the 2015 within-reach study (Table 1)

to the single-station means by sites for the 2007 among

streams study (Table 3). This occurred even though

light was much more variable for the more broadly

distributed streams. In addition, proxies for light

availability (canopy, turbidity, and depth) had the

opposite of expected relationship with GPP.

An important aspect of examining spatial hetero-

geneity in stream metabolism is checking for hetero-

geneity in dissolved O2 values along the studied reach

(Hondzo et al., 2013; Demars et al., 2015). This allows

for identification of inflows that may be delivering

low-oxygen water to the stream, resulting in an

overestimation of ER (Demars et al., 2011). High

statistical correlation of O2 values measured at various

points on the Kansas River suggest that inflows of

deoxygenated water do not affect our metabolism

estimates (Hall & Tank, 2005; McCutchan et al., 1998;

McCutchan et al., 2002), as do the relatively constant

estimates of discharge across our numerous transects

of depth and velocity.

Prior research on a small nearby stream (Siders

et al., 2017) documented sharp spatial segregation in

diurnal O2 signals (thalweg compared to the bottom of

pools or side pools). These conditions would be

expected to lead to lack of spatial correlation when

time is not corrected for. If there were hotspots of

metabolic activity upstream from a station that were

highly influential on downstream O2, then we would

expect high correlation upstream stations to emerge

with time-correction. We saw a strong spatial auto-

correlation of O2 with no time correction, indicating

that all stations are reacting simultaneously to abiotic

drivers and that nearby stations (those within the 80%

zone of influence calculated from aeration) behave in

very similar ways.

In contrast, the upstream weighting of two-station

estimates compared to the lowermost one-station

estimate also informs scales of inference and suggests

that the two-station method detects smaller-scale

heterogeneity. However, this concept is somewhat at

odds with the idea that distance (travel time) weighting

of O2 for correlation becomes consistently weaker

bFig. 6 Metabolism estimates for single-station (bottom station)

and two-station estimates from above (bar width reflects

distance between stations moving upstream (except left-most

bar which is the single-station estimate), as well as the distance-

weighted (open triangles) and aeration footprint-weighted (open

circles) values for each sequentially weighted estimate includ-

ing the segments below as calculated from Eq. 2. See methods

for calculation methods A and B match, C and D match, and

E and F match. The lowermost station in A and B is station 9,

with successive two-station estimates from 9–7, 7–6, 6–5, and

5–4. The lowermost station in C and D is station 8, with

successive two-station estimates from 7–6, 6–5, and 5–4. The

lowermost station in E and F is station 3 with 3–2 and 2–1

single-station estimates
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over longer distances. Even more fine-scale estimates

of metabolism could help understand this discrepancy.

Biases inherent in the two-station estimates could lead

us to conclude heterogeneity at this scale occurred

falsely (see Demars et al., 2011, 2015). Finer scale

methods may resolve this issue.

Models from Dodds et al. (2013) of metabolism for

the Mississippi River showed that during certain times

of the year there were distinct diurnal swings in O2 that

could be related to light as expected with GPP. This

occurred even though the upstream zone of influence

was calculated to be 500–800 km upstream. Given the

median estimates of velocity of 1.2 m s-1 from the

Dodds et al. (2013) paper, the travel time for the zone

of influence would be 4.8–7.7 days. If the average

travel time for a parcel of water was even half of that

rate, the diurnal O2 signal should be completely

obliterated. The diurnal swings must come from

relatively local processes that are more influential on

O2 concentrations and with substantially shorter travel

times to the point of sampling. These data agree with

our observations that contiguous two-station estimates

can be quite heterogeneous, and that O2 concentrations

corrected for travel time do not correlate well with

each other.

Conclusion

Our data provide some support for the idea of

functional processing zones for river metabolism as

presented in the Riverine Ecosystem Synthesis (Thorp

et al., 2006) along reaches of several hundreds of

meters in the Kansas River. As GPP can significantly

influence food webs, even in systems with relatively

restricted carbon inputs from GPP (Brett et al., 2017),

future research is required to link metabolic hetero-

geneity with food web heterogeneity. We found

metabolic heterogeneity both among tributaries across

the Kansas River watershed and within a reach of the

Kansas River itself. Local heterogeneity in metabo-

lism is not confined to larger flowing waters in this

system. For example, Siders et al. (2017) documented

considerable heterogeneity in a small stream near our

20-km reach on the Kansas River.

The ability to detect heterogeneity is directly

influenced by the method chosen to measure metabo-

lism, consistent with Reichert et al. (2009). Most

previous research on river metabolism is based on

measurements at a single location, but the observed

spatial variability within the Kansas River suggests

that collecting data at multiple locations along the

river may be required to make realistic estimates of

metabolism. This would be consistent with the

recommendation of Demars et al. (2015) to average

results of several O2 probes arrayed along a stream.

Our data further suggest that such averaging should

not occur with corrections for travel times between

stations. Our two-station results indicate that there

were hotspots of metabolic activity at scales smaller

than those integrated by single-station approaches.

Estimates of GPP, ER, and aeration based on diurnal

O2 dynamics verified that single-station methods

average across considerable heterogeneity in the

system. We demonstrate that there are some undefined

processes that lead to O2 dynamics in flowing waters,

such as time lags in O2 peaks, which cannot be

attributed to aeration.
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